Feasibility and Infeasibility of Secure Computation with Malicious PUFs

نویسندگان

  • Dana Dachman-Soled
  • Nils Fleischhacker
  • Jonathan Katz
  • Anna Lysyanskaya
  • Dominique Schröder
چکیده

A recent line of work has explored the use of physically uncloneable functions (PUFs) for secure computation, with the goals of (1) achieving universal composability without additional setup, and/or (2) obtaining unconditional security (i.e., avoiding complexity-theoretic assumptions). Initial work assumed that all PUFs, even those created by an attacker, are honestly generated. Subsequently, researchers have investigated models in which an adversary can create malicious PUFs with arbitrary behavior. Researchers have considered both malicious PUFs that might be stateful, as well as malicious PUFs that can have arbitrary behavior but are guaranteed to be stateless. We settle the main open questions regarding secure computation in the malicious-PUF model: • We prove that unconditionally secure oblivious transfer is impossible, even in the standalone setting, if the adversary can construct (malicious) stateful PUFs. • If the attacker is limited to creating (malicious) stateless PUFs, then universally composable two-party computation is possible without computational assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditional UC-Secure Computation with (Stronger-Malicious) PUFs

Brzuska et. al. (Crypto 2011) proved that unconditional UC-secure computation is possible if parties have access to honestly generated physically unclonable functions (PUFs). Dachman-Soled et. al. (Crypto 2014) then showed how to obtain unconditional UC secure computation based on malicious PUFs, assuming such PUFs are stateless. They also showed that unconditional oblivious transfer is impossi...

متن کامل

New Feasibility Results in Unconditional UC-Secure Computation with (Malicious) PUFs

Brzuska et. al. (Crypto 2011) proved that unconditional UC-secure computation is possible if parties have access to honestly generated physically unclonable functions (PUFs). Dachman-Soled et. al. (Crypto 2014) then showed how to obtain unconditional UC secure computation based on malicious PUFs, assuming such PUFs are stateless. They also showed that unconditional oblivious transfer is impossi...

متن کامل

Unconditionally Secure and Universally Composable Commitments from Physical Assumptions

We present a constant-round unconditional black-box compiler, that transforms any ideal straightline extractable commitment scheme, into an extractable and equivocal commitment scheme, therefore yielding to UC-security [Can01]. We exemplify the usefulness of our compiler providing two (constantround) instantiations of ideal straight-line extractable commitment using (malicious) PUFs [OSVW13] an...

متن کامل

Universally Composable Secure Computation with (Malicious) Physically Uncloneable Functions

Physically Uncloneable Functions (PUFs) [28] are noisy physical sources of randomness. As such, they are naturally appealing for cryptographic applications, and have caught the interest of both theoreticians and practitioners. A major step towards understanding and securely using PUFs was recently taken in [Crypto 2011] where Brzuska, Fischlin, Schröder and Katzenbeisser model PUFs in the Unive...

متن کامل

Billion-Gate Secure Computation with Malicious Adversaries

The goal of this paper is to assess the feasibility of two-party secure computation in the presence of a malicious adversary. Prior work has shown the feasibility of billion-gate circuits in the semi-honest model, but only the 35k-gate AES circuit in the malicious model, in part because security in the malicious model is much harder to achieve. We show that by incorporating the best known techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2014